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The kinetic energy of the transient response of a harmonic oscillator is minimi- 
zed by actions with a bounded current total momentum. Such a problem arises, 

for example, when choosing a mass flow program minimizing the kinetic energy 
of transfer of a satellite into a circular orbit by a reactive force having the di- 
rection of the Earth’s gravitational force (see El], p. 32). It is shown that the 
optimal control contains an impulse component. This leads to the violation of 

the optimality principle for extremals. Therefore, the synthesis procedure is 

based on the analysis of an auxiliary variational problem under the usual COD- 

straints on the control [Z]. 

1. Statement of the problem and it: reduction. Lettheplantbe 
described by the differential equation of a controlled harmonic oscillator 

5’. + 0% = ku (%k#O) (1.1) 
(where u is the control) 

u(t)=O(t<O); IY~u]@)/<;~, IvIu](l)= j: u(z)d’c (1.2) 
--m 

Here Y [ul (t) is a quantity proportional to the current value of the tocal momentum 
of the control force, We examine the autput 2 [x:u, 10’; ~1 (t) of plant (l.l), corres- 
ponding to the initial conditions 

5 15*, r;; ul (0) = x0, z’ Lro, z,‘; 281 (0) = x*:O’ (1.3) 

and to some program u (t), subject to requirements (1.2). We define the control’s per- 
formance index m 

A 1~ 50, @I= s Is’ I% so’, @I W” 32 0.4) 
0 
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The following problem is solved in this paper. 
Problem A. In class (1.2) find the control minimizing functional (1.4) computed 

on the motion of plant (1.1) with initial conditions (1.3). 

A strict mathemetical statement of Problem A has been given in [Z]. Since the ad- 
missible controls are generalized functions [2], the classical variational principles writ- 
ten out for Problem A lose sense. This circumstance reflects a deeper fact ; as it will 
be stated, the extremals of Problem A do not satisfy the principle of optimality [3]. In 
this paper, as in [Z], such an obstacle is overcome by passing to an auxiliary variational 

p:oblem with the usual constraints on the control. 
Before we formulate this problem we note that without loss of generality we can set 

o = k = 1. Then in the standard notation z1 = 5, x2 = 5’ plant (1.1) can be des- 
cribed by the system 

. . 
Xl = 22, x2 = - x1 + u; Xl (0) = Xl0 = 50, 1c2 (0) = 320 = X0’ (1.5) 

and functional (1.4) receives the form Q) 

A 1x10, ~0; UI = 
s 

~,~(t)dt . (1.6) 

0 

We define a transformation of the phase trajectories (but not of the coordinates) of 

system (1.5) by setting 
(1.V 

In [2] it was proved that such transformed trajectories are described by the system 
. . 

Pl = p2, p.2 = v - p1; Pl (0) = CL10 = --Go, p2 (0) = CL20 = 510 (1.8) 

while to the functional (1.6) there corresponds the index 

A ML,o, ~20; VI = r (v - plj2 dt 
(1.9) 

0 

Thus, Problem A is equivalent to the following auxiliary problem. 
Problem B. In the class (1.2) of control signals v I (the first of conditions (1.2) 

signifies that v (t) = 0 h w en t < 0) find the program realizing the minimum of 

functional (1.9). computed on the trajectories of system (1.8). 

The theorem stated below follows from a well-known generalization of the Weier- 
strass theorem. 

Theorem 1. The solution of Problem B exists and is unique. 

2. Syntheris of the optimal control for the auxiliary problem. 
We apply the maximum principle [4] to solve Problem B. According to this principle 
the optimal function v (t) satisfies the relation 

ypl H 1111 (0, p2 0); $1 (t), $2 0); VI = H [PI (09 fl2 (0; (2.1) 

y_, 

$1 (t), $2 (0; v (t)l = 0 

H f.,.;.,.;. I = - (v - PlY + 91P2 + *2 (v - I4 (2.2) 

Here ql, q2 is a nontrivial solution of the adjoint system 
(2.3) 

91’ = *2 + 2 [pL1 - v (t)l, $,2’ = - $1; $1(O) = $10, 92 (0) = *20 

Let t, > 0 and let 1 v (t) 1 = 1 in some neighborhood of t, . Then from (2, l), 
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v (0 = sign v” CO7 v* = pl + ( qz / 2 1, &, 4~ is a solution of system (2.3) with 
initial conditions $ (t,), 4s (&). Under the action of this control the phase point of 

system (1.8) moves along the circle 

[Pt - v (&Jls c Ps2 = [Pt (tot) - v (&)I2 + PLrt2 (ta) (2*4) 

moreover, identically 

- [v (LJ - !%I2 + Iw2 -!- $2 [v (Gz) - PJ = 0 (2.5) 

Let ta be a root of the equation 

Y0 (t) = v (ta) (2.8) 

other than ta . According to (2.1). a switching occurs at the instant tp on the control 
v (t) 31: vu (t), where $1, q2 is a solution of the system 

91’ = 0, *; = - $1 (2.7) 

with initial conditions $t (ts), 9s (ta) . For t > tp , identically 

9&a) t-L2 + ($dW = 0 (2.8) 

since $i = con& by virtue of (2.7). Determining I&, from (2.8) and entering it into 

the formula for vO, we obtain 

y (t) = pl -t V- % (tfi> pa sign% (2.9) 

With due regard to (2.9) the plant’s motion itself is described by the system 

1Ll‘= P27 I-%-== v-$1 (tfi) P2 sign*2 (2.10) 

By the definition of instant tg and according to (2.9), the phase point of system (1.8) is 
located at the switching instant on the line 

p1 + V- %(tg) k sign*, @a) = y 06) (2.11) 

Its subsequent motion is effected, according to (2.10). along the semi-cubical parabolas’ 

(2.12) 

Pr - Pr @a) = +- sign?.!! 
v% ($3 1 

[(-+s)“-- (p2 (t#*], p2 (tp) < 0 (2.13) 

Two cases are further possible. In the first of them we have ll_1s (tY) = 0 at some 

instant t, . Then from (2.Q cl2 ( tY) = 0 and, since 1 v (tY) 1 < 1, by virtue of (2.9) 

I PI (td I < 1. F or t > ty , from (2.1) we have Y (t) = pl (tY), and under the action 
of this control the phase point is located at the equilibrium position. In the second case 

9s does not change sign. The derivative of (2.9) by virtue of (2.10) has the form 

v’ ~(2.10j = p2 - ‘is $t (te). According to (2.8), 11s and $t (tp) are opposite in sign. 
Therefore, the derivative being.discussed is sign-constant. Further, the derivative of v0 

by virtue of (1.8) and (2.3) equals v’ [f2.ioj (tsj at instant t p and has the sign of the 
number - v (te). Consequently v’ 1 (2.10j (t) v (ta) < 0. This inequality allows us 
to conclude that at some instant ty the phase point of system (1.8) is found on the line 

p1 + V- 9r @a) CL~ sign q2 (ta) = - v (tsf (2.14) 
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Thus, the extremal of Problem B consists of arcs of the circles (2.4) with alternating 

centers (-1.0). (1, 0). These arcs are separated by parts of parabolas (2.12). (2.13). By 
the same token, Problem B has been reduced to the ascertainment of the location of the 
original position on the extremal and to the determination of the initial conditions of 

the adjoint system, ~o~es~nding to this extremal. 
The first of these questions is answered for the initial conditions 

1 < PlO? P20 = 0 (2.15) 

Assuming 1 v (0) f < I, from (2.8) we can obtain *so = 0. This, with due regard 
to (2.9). leads to the bound 1 plo 1 < 1, contradicting (2.15). Consequently, the rela- 
tion (2.5) should be fulfilled at the initiai instant; whence it follows that y (0) = 1 
and 

-$*o = 1 - I%0 (2.16) 

The projection onto the (i_c 1 , &)-plane of the trajectory of systems (1.8). (2.3) with 
initial conditions satisfying relations (2.15), (2.16), we shall call the qlo-trajectory. The 

phase point of system (1.8) moves along $ r,-trajectory, at first turning around the point 
(I, 0). The switching instant t, on the nonlinear control (2.9) (l’s = tr) is determined 

by Eq. (2.6) (t, = 0, Y (tct) = 1). Subsequent motion is effected along parabola(2.13) 
until hitting either on the segment 1 ~1 1 < 1, & = 0, or on line (z. 14) (TV = t,, 

V (tp) = 1) of the second program switching. From the instant ts = tu the phase point 

starts to rotate around the point (-1, 0). On this segment, the solution of system (1.8), 
(2.3), calculated by the Cauchy formula, has the form 

pI + 1 = ps2 (l, co6 “G + sin “61, ps = pa2 (cos ‘t - 2, sin 4 (2.17) 

*r = (7 - 12) (P.1 + I)7 9s == - 2(PL, + 1) -t VZ + l-Q2 (1 + 122) sin r 

Here 

t = t--s, &2 = Pi fts) (i = 1, a), Pi.2 + 1 = &L,, 

The switching instant ts = ts + 7s on the nonlinear control is determined by Eq. 

(2.6) (t, =: t,, y (ta) = 1). The substitution of the first and last of solutions (2.17) 
into this equation yields the relation 

ctg 7 = I, - (1 + 222) r-1 (2.18) 

Let ‘ps = arctg I,. Since the zero of the right-hand side of (2.18) tg rps Jr 

ctg cp2 > 2 > 3t / 2, the following statement is valid. 

Lemma 1. If 0 < fpz < x / 2, then n, / 2 < T, < x. The estimate (n/2)- 

c~s<z,<n holdsfor --z/22((~~<0. 
Corollary. Along a $lo-trajectory there are no more than two switchings in each 

half-space EL2 < 0, pLz > 0 . 
Let $lo (plo - 1) be the value of +,,,corresponding to the optimal &,-trajectory. 

As Pro sweeps from 1 to 00 the points (pIi, pzi) =: (pl (ti), pn (ii)) (i = 1, 2) , 

the $10 @IO - 1) -trajectories describe the lines 

& + si (ps) = (- $)‘+I (i= 1, 2) (2.19) 

respectively, According to the Corollary to Lemma 1 there are no other switching lines 
of the optimal control synthesis problem for system (1.8) in the region & < 0 . By 
symmetry considerations the switching lines in region & > 0 have the form 
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Pl -s+-pa)=-{-+ (i=l,Z) (2.20) 

The next assertion is established by means of Lemma 1 and its Corollary. 

Lemma 2. si(Q>Ofor l%<O (i=1,2) 
Lemma 3, The optimal transient response in system (1.8) is unbounded in time. 
In fact, assuming that the transient response time t, is finite, according to [4] we have 

q1 (t,) = $a (t,) = 0. Since the response can be completed only in the nonlinear control 

mode, by virtue of (2.7) $1 (t) = 0 for tx B t < t,. Consequently, on the interval [ti, 

t,l the extremal is a straight line parallel to the axis pa = 0 and cannot intersect it. 

Now, with the aid of Lemmas 3 and 2 we can derive the equation in superpositions 
relative to sr as the equation of invariant curves. Further, alowing for (2.19) (i = 1) 
in (2. ll), we obtain 

(2.21) 

According to (2.7), %j$ does not vary on a segment of nonlinear control (2.9). Conse- 

quently, this function is a realization of the function y_ @XV kz) defined by the equa- 

tion 
(2.22) 

with initial conditions (2.21) on line (2.19) (i = I), Equation (2.22) has the following 

integrals : 
(2.23) 

Substituting (2.21) and (2. X9) (i = 1) into them, with due regard to Lemma 2, we ob- 

tain a third-degree equation in jkr, solving which by Cardan’s formulas, we have 

The second relation, necessary for obtaining the connection between cr and c2, has the 

form -I&*-’ sra (pa”) = cr. A subsequent substitution of integrals (2.23) into these 
two formulas yields an equation determining the desired function Y_. In region l$ > 
0 the function being discussed has the form - y_ (- pr, - &&a). Now it is not dif- 
ficult to complete the synthesis of the optimal control. The extremals of Problem B 

are shown in Fig. 1. Here, I and 2 are the lines (2.19) (i = 1, 2); 3 and 4: are the 
lines(2.20) (i = 1, 2). 

3, Questions of oppraxf mation, Below we shall need an explicit form for 

/Q ( 

1/k 

the solution of systems(l.8). (2.3) with ini- 

3 tial conditions (2.15), (2.16) 

I-Q - 1 = (&* - 1)cos t, (3.1) 

pa = - (Itlo - 1) sin t 

$1 = th- 1) + $10 cost, 

%=:-f-h 4-f +&-*resint 

The substitution of the first and last of solu- 

tions (3.1) into (2.6) yields the equation 

(3.2) 
ctg .t =I I, + t, I, = @I* - I)“-% $10 

Fig. 1 The following assertion is proved in the 
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Appendix (Sect. 5). 
Lemma 4, Let qroft) > 9ro(a). Then the $to(r) -trajectory, bordering the $rO@) - 

trajectory, recedes from it, 

Let us separate the real axis into three sets. To set Mr we refer those %o for which 
the ‘& -trajectories have a finite transient response time. Values of I& defining 

$10 -trajectories not winding to the segment 1 f-h~ 1 < 1, p2,, = 0, comprise set Ms. 
All the remaining go into Mt. The next statement follows from Lemmas 3 and 4 and 
Theorem 1. 

Theorem 2. The sets Mi (i == 1, 3) are continuous; M, consists of the one 

point $10 fka - 1). The corresponding *r. (&, - 1) -trajectory is an extremal 
of Problem 3 with initial conditions (2.15). 

An analysis of Eq. (3.2) with due regard to Lemma 2 yields the estimate 

In Theorem 2 we have established an algorithm for approximating $rO (‘pla - 1). We 

describe it. Let ‘l < plo ;\( 3. Then the ?&-trajectory with 

%o(‘) (PlO - 1) = &lo - 1) fctg fl - t1) (3.3) 

ti = arc cos ivY (ptO - 1)” - 2 - 3 @ICI - lV1l 

in a half revolution falls into the position (-1, 0). The value of (3.3) is obtained from 

(3.2) where t is the number found from the condition that the point (-1, 0) lies on 
parabola (2.13) with 

sign 9% = 1, Y-q1 (TV) = (1 - kt) (- lU1l~ 

while f-k, Pat are defined according to (3.1). It can be shown that it is impossible 
to fall from the position with plo > 3 into the point (-1, 0) in a half revolution and 
that for 1 < f.tto < 5 there exists ‘$iot2) (pro - 1) for which the &,-trajectory 

falls into the point (1, 0) in one revolution, etc. Thus, let 2k - 1 (: pi0 < 2k + 1 

and %#rotn) (pt,, - 1) (n = k, k + 1, . . ) be such that the corresponding &-tra- 

jectot’y falls into the position ( (-l)n; 0) after n half-revolutions. From Theorem 2 fol- 
lows a corollary. 

Corollary, The sequence t&o(n) (pi0 - 1) by increasing, tends to qiO (l.kl,, - 1) 
as k<rz-+oo , 

We now describe an algorithm for approximating the switching lines (2.19). At first 
we construct the line on which the phase point falls into one of the ends of the segment 

I Pl I < 1, I.% = 0 under the action of control (2.9) wherein $1 (ta) has been found 
at the initial instant from condition (2.11). We have the ellipse 

pi2 +.2/s Pa2 = 1 (3.4) 

Further, in the region pi < - 1, pz < 0 we obtain the line on which the phase point 
under the action of control y = - 1 hits onto ellipse (3.4) as onto a switching line. 
Let z(l) be the time of motion of the point from the desired line to the axis pr = 0 
and let 2(a) be the remaining time of motion to ellipse (3.4). With the aid of the first 
two of solutions (2.17) we can obtain the values 

$1) = arc tg (pi + l)-‘pz, Zf2f = arccos Cfg - 2R2 - 3) R-l 

fi2 = (PI + 1Y 3 EL22 
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The expression for $2) has sense for R < 2. Substituting t = @l + d2) into 
(2,18) we have the equation for the desired line 

ctg $1) + ctg $2) = T(i) + $21 (3.5) 

This line, starting at point (-1, o), makes a right angle with the axis p2 = 0 at the 

point (-3, 0). Let us now find, in the region pi < 1, p 2 < 0 , the line of the preced- 
ing switching on control (2.9). For this we solve a third-degree equation in CL1 (ta), 

obtained from (2.13) with due regard to the fact that (2.14) is fulfilled for the points of 
line (3.5),while (2.11) is fulfilled for the points of the desired line. We have 

~l(tp)=1+~--+t-~2+Ps+1/-q--)/qa~ (3.6) 

CL2 @a) = (Pi + 1)-2 CL2 IP1 @I31 - 11 2 

P = - 2/e h + 1J2 cLzl 
fJ=- l/2 (p.1 + 1) 3 + l/3 (cl1 + II2 (IQ - 1) .u2-l 

The /A~, p2 occurring in (3.6) are connected by Eq. (3.5) and, therefore, (3.6) are the 
parameteric equations of the desired line. The latter, starting at the point (1, 0). is tan- 
gent to line (3.5) at the point (-3, 0). Lines (3.5) and (3.6), as well as those centrally 
symmetric to them,form the first approximation to lines (2.19). 

Having chosen, instead of ellipse (3.4), the first-approximation line lying in the re- 

gion P2 > 0 and starting at point (-1, 0). and having effected the subsequent construc- 
tions, we obtain the second approximation to lines (2.19), etc. (see Fig. 2). It can be 

Fig. 2 

established that the n-th approximation line : 
1) leaves from the ends of the segment 1 p1 1 < 1, ~2 = 0; 
2) makes one and the same angle with the axis pz = 0 at the point (- 272 - 

1, 0) in region cl2 < 0 and at the point (2n + 1, 0) in region p2 > 0; 
3) lies below (above) the (n - I)-st approximation lines (n > 2) in the half- 

plane P2 < 0 @2 > 0). 
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By property (3) and the Corollary to Theorem 2 the sequence obtained converges to 
the optimal switching lines in Problem B. 

Let ce_ (1s) be the largest negative root of Eq. (3.2). 
Lemma 5. The line (2.19) (i = 1) makes a right angle at point (1, 0). while the 

slope of the line (2.19) (i = 2) at point (- 1, 0) equals - tg w _(- n,/ 2). 
In fact, the Fiat-ap~o~mation line is tangent to the ray pr = 1, pa < D at the point 

(1, 0) , while by property (3) and Lemma 2 the line (2.19) (i = 1) lies between them. 
Further, an investigation of Eq. (3.2) with due regard to Lemma 2 shows that 
a_ (-n / 2). This signifies that the ray with origin at point (1, 0) and slope-tie- (lo) > 
2) lies above the line (2.20) (i = 2). On the basis of property (3) the latter is located 

above the corresponding first-approximation line which has the slope - tg o_ (-- nl,) 
at point (1, 0). 

4, Synthesis of the optimal control for the original problem. 
Transforming Eqs, (2.19) by formulas (1.7) we obtain the switching lines for the original 

problem 
Si txl) = x2 (i=i, 2) (4.1) 

By Lemma 2 lines (4.1) are located in the second quadrant. and according to Lemma 5, 
the first of them is tangent to the x1 -axis, while the second one is tangent to the straight 
line 5s = ctg 0 _ (- n/2) zr, above which it lies. Two other switching lines are 
centrally symmetric to lines (4.1). 

We describe the extremal with the initial condition xl0 < 0 The case srO > 0 is 
analogous to the one selected, At first let st {x10) > xss + 1. Then the point (pro, 

i+s) , corresponding by virtue of rule (1.8) for recalculating the initial conditions, is 
located in region ps < 0 to the right of the line (2.19) (i = 1). According to Sect. 
2, v = 1. Since v = 0 for t < 0, the control u = V’ contains an impulse compo- 
nent which causes an i~tantaneous displacement of rhe phase point of system (1.5) into 

the position (zrO, zsO + 1). After this it reaches, by rotating around the origin, the line 

(4.1) (i = 1) at instant tg . For t > tg , Y is determined by formula (2.9) whose dif- 

ferentiation by virtue of system (2.10) yields the equation u = ps - l/s f~\. 

Allowing for (2.21) and (1.7) in this expression, we obtain u z: x1 -t_ l/s x,;l srs (a&l, 
where zlr is the abscissa of the first switching point. This control causes a motion along 
the parabola z1 = z,,s~-~ (511) Xs” up to the instant t,. At this instant the phase point 

of system (2.8) reaches the line (2.19) (i = a), while, respectively, the extremal of 
system (1.5) reaches the line (4.1.). Next, v = - 1, is established, as a result of which 

the phase point of system (1.5). having begun a rotation around the origin, leaves the 
region being eonsidered. 

If X.,0 > s2 (x1,,) + 1, we can discern that after the initial displacement by unity 
downward the phase point of system (1.5) departs into the region xl0 > 0 along a cir- 
cle. It remains to analyze the case when si (zrs) - 1 < zsO < ss (5r0) + 1. By 
applying the recalculation formulas (1.8) and (2.9). with due regard to the calculations 
carried out at the end of Sect, 2, we obtain 

Y(0) = - %O+V-%O - yl’_ (- %o, x13) 
The line 

v (0) = 0 (4.2) 

separates the lines (4.1). Under the action of the impulse Y (0) 6 the phase point of 
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system (1.8) is thrown into the range of lines (4.1). if v (0) > 0, it falls into a position 
below line (4.2). In case v (0) < 0 , it does not leave the region that is above line(422). 

If the original position lies on line (4.2). the impulse is absent. In any of these versions 
the subsequent motion is effected along a parabola up to hitting onto the line (4.1) 

Fig. 3 
An analysis of (3.2) shows that tf’ < tp’. 

This and (5.1) conclude that if tr) < n: / 2, then $$i’ > +gj and 9::) < @ for tf’ > 
1~ I 2. The latter signifies that the first line in(2.11) (tP = t:f), $i ($) = q$, & (ta) = 
$‘,1, v ($) = 1) is always to the right of the second. Let us establish that in the half- 

space P,, < 0 the +$ -trajectories are in the relation prescribed by the lemma. From 
the three cases possible let us consider, for example, that when the first-switching lines 

are located to the left of the staight line Pi = 1. In this case, according to what was 
presented above, the 9(,6’ -trajectories are circles in the region to the right of the first- 

switching line. The difference of their radii is 

(i = 2). After this the phase point of system 
(1.8), turning around the origin. leaves the 

region being considered. Further, with due 
regard to what was presented at the end of 
Sect, 2 and in (1. ‘7). we can write the opti- 
mal control as a function of the phase coor- 

dinates. The extremals of Problem A are 

shown on Fig. 3. Here, 1 and 2 are the 
lines (4.1) (6 = 1, 2); 3, 4 are the lines 

si (x1) = x2 - (- I)’ (i = 1, 2); 5 is 

line (4.2). 

6, A pprndix, Proof of Lemma 4. 
Allowing for the first of relations (3.1) in the 

third, we can obtain the expression 
(5.1) 

In the region that is to the left of the second line of second switching, the @-trajec- 

tories are once again circles. the difference of whose radii is Ar, = $1 - ry) > 0. It 

suffices to establish that Arz > Art. This will be so if (’ d /da ) Ar (a) <O, where Ar (a) 

refers to the lines Pi + f - *l(i) J.Q = a, 1 a 1 < 1. Computing (d J dz) yztif = Pa@) 

(a’)-’ , by virtue of (2.10) (& > 0), we obtain 

The components of the gradient of the function under the radical with respect to $lfi), 
pz(‘) are nonnegative. This yields the fact required. 

According to the Corollary to Lemma 1, the third-switching lines are located in the 
half-space Pz > 0. It remains to establish that the second of them is to the right of the 
first. Then, in the region ,u2 > 0 the $10 (*)-trajectories are to be found in the same po- 

sition as in the half-space PLz < 0. Of the three cases possible we again examine only 
one: the second-switching lines are to the left of the straight line PL1= --I, while the 
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third-switching lines are to the right of this same straight line. It is sufficient to estab- 
lish the diminution of the third function in (2.17) along (2.14) (Y = - 1) and the non- 

positiveness of a@ls f ai,. We have 

E 
I 
(2.14) = CT3 - 4 (2 t 

since 73 < Z2 follows from the inequalities $13 

81:,,ldlz = El!22 ](TQ’-- 11 (CL12 -I_ 1) 1”22_l t 

From (2.21) 

< 0, p13 + 1 > 0 . Further 

(Tg - 12) (cos Ta + l’&?-%,‘] (5.3) 

z3 ’ = za sin” T3 (2E, - -r& ](i .-+ I& sir12 rs -t ~~21-1 

Obviously, 9 < r,‘< 1. By Lemma 1, ~0s ~~ < 0. Consequently, (5.2) is nonpositive, 
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We prove new properties of the precessional motions relative to the vertical of 
a heavy solid body having a fixed point. In particular, we have shown that semi- 
regular precessions are possible only in the Hesse solution, while in the case when 
the precession rate and the self-rotation velocity are not constant, the constant 
of the integral of the angular momentum equals zero. 

2, Strtsmsnt of ths problsm. Definition &l-3]. The precessional 

motions of a solid body with one fixed point are the motions under which the angle bet- 
ween two straight lines, one of which is fixed in the body , while the other is fixed in a 

nonmoving space, remains constant. 
let k and v* be unit vectors fixed, respectively, in the body and in space, and let 6 

be the angle between them. Then, the body’s motion is a precession if 6 = const. By 
introducing into consideration the Euler angles 6, cp, I#, we obtain the expression 


